Workshop to Discuss Proposed Amendments to Motor Vehicle CNG Fuel Specifications

February 2002

California Environmental Protection Agency

Air Resources Board

Associated Gas Fuel Quality*

Component	SCC	SSJV	SC	Standard
Methane	88.2	86.2	86.2	88.0 min.
Ethane	4.9	8.8	5.3	6.0 max.
C3+	3.7	2.5	4.8	3.0 max.
Inerts	3.2	2.5	3.7	4.5 max.
CO_2	2.3	1.9	2.8	
${ m N}_2$	0.9	0.6	0.9	
BTU	1086	1100	1106	970 - 1150 * *

^{*} Volume Weighted Average

^{* *} So. Cal. Gas Co. Requirement

Pipeline Map

Long Term Solution

- → Collaborative industry agreement between gas producers and gas suppliers to provide complying CNG
 - Alternative Fuels Regulation that facilitates potential industry options

Objectives of Proposed Amendments

- → No significant adverse impact on engine performance or emissions
- ◆ Increase flexibility for industry to comply with the regulation

Proposed Amendments to CNG

- ★ Add an alternative statewide CNG fuel specification
 - Methane Number (MN) of 80
- ✦ For SCC and SSJV add a limited use option CNG fuel specification
 - MN 73, if all three conditions are met
 - Station cannot economically provide MN80 fuel
 - Fleet vehicles can operate on MN73 fuel
 - Fueling stations have controls to prevent misfueling

Methane Number Index

- ◆ Calculated number based on hydrogen to carbon ratio of the hydrocarbon content of the fuel that predicts the likelihood of the fuel to cause engine knock
- **→** Similar to Motor Octane Number

Methane Number Index (cont.)

- ◆ Index used by engine manufacturers to design engines and evaluate performance
- → MN index allows hydrocarbon component content tradeoff
- → MN 80 applicable to existing and new engines
- ★ MN 73 applicable to LD vehicles and HD advanced technology engines

Effect of Proposed CNG Specifications

- **→** Fuel Supply
- **→** Fuel Composition
- → Impact on Engines and Emissions

Impact on Fuel Supply

→ Complying CNG under Existing Specification

- SCC	11%
– SCC	1170

→ Complying CNG under Proposal

	MN80	MN73
- SCC	21%	89%
– SSJV	24%	99%
– LAB	99%	N/A

Impact on Fuel Composition

- ★ Existing CNG specification equates to about MN 81 but limits ethane, propane, and higher hydrocarbons
- ◆ Tradeoff could increase the content of ethane or C3+
- **→** Small changes in reactivity
 - Existing Specification0.1 MIR
 - Proposed Amendments 0.09 0.15 MIR

Quality of CNG Entering SC

Existing Specification

	MN
Volume Wtd. Avg.	88

Proposed MN 80 Specification

	MN
Volume Wtd. Avg.	85

CNG Motor Vehicle Emission Testing

- → Two studies conducted to evaluate CNG fuel quality affects
 - Driveability
 - Emissions
 - Fuel economy

Light Duty Testing

→ 5 fuels tested

Methane content82% - 94%

- Ethane content 2% - 8%

- C3+ content 0% - 10%

– MN 63 - 103

Wobbe Number 1245 - 1425

♦ 8 vehicles tested

Dedicated and Bi-fuel

Light Duty Test Results

- **→** Emissions from all dedicated OEM vehicles
 - Below applicable ULEV standards
 - Slight variations in all emissions, both increases and decreases, but no correlation to fuel quality
 - No change in performance

Heavy Duty Testing

- → 4 fuels tested
 - Methane content 82% 95%
 - Ethane content 3% 8%
 - C3+ content 0% -5%
 - MN 73 99
 - Wobbe Number 1310 1363
- → 7 vehicles tested
 - 3 advanced closed loop technology (ACL)
 - 2 first generation closed loop technology (1CL)
 - 2 open loop technology (OL)

PM data for ACL Vehicles, UDDS Cycle

NOx data for ACL Vehicles, UDDS Cycle

